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A fundamental understanding of nonlinear oscillations of a viscous liquid drop is 
needed in diverse areas of science and technology. In this paper, the moderate- to 
large-amplitude axisymmetric oscillations of a viscous liquid drop, which is immersed 
in dynamically inactive surroundings, are analysed by solving the free boundary 
problem comprised of the Navier-Stokes system and appropriate interfacial 
conditions at the dropambient fluid interface. The means are the Galerkin/finite- 
element technique, an implicit predictor-corrector method, and Newton’s method for 
solving the resulting system of nonlinear algebraic equations. Attention is focused 
here on oscillations of drops that are released from an initial static deformation. Two 
dimensionless groups govern such nonlinear oscillations : a Reynolds number, Re, and 
some measure of the initial drop deformation. Accuracy is attested by demonstrating 
that (i) the drop volume remains virtually constant, (ii) dynamic response to small- 
and moderate-amplitude disturbances agrees with linear and perturbation theories, 
and (iii) large-amplitude oscillations compare well with the few published predictions 
made with the marker-and-cell method and experiments. The new results show that 
viscous drops that are released from an initially two-lobed configuration spend less 
time in prolate form than inviscid drops, in agreement with experiments. Moreover, 
the frequency of oscillation of viscous drops released from such initially two-lobed 
configurations decreases with the square of the initial amplitude of deformation as Re 
gets large for moderate-amplitude oscillations, but the change becomes less dramatic 
as Re falls and/or the initial amplitude of deformation rises. The rate at which these 
oscillations are damped during the first period rises as initial drop deformation 
increases ; thereafter the damping rate is lower but remains virtually time- 
independent regardless ofRe or the initial amplitude of deformation. The new results 
also show that finite viscosity has a much bigger effect on mode coupling phenomena 
and, in particular, on resonant mode interactions than might be anticipated based on 
results of computations incorporating only an infinitesimal amount of viscosity. 

1. Introduction 
Oscillations of liquid drops play a central role in diverse areas of science and 

technology, e.g. in cloud physics (Beard, Ochs & Kubesh 1989), in various mass 
transfer operations of chemical engineering (Basaran, Scott & Byers 1989), and in 
containerless processing in low gravity (Carruthers & Testardi 1983). Unfortunately, 
as discussed below, previous theoretical work on oscillations of drops having 
arbitrary viscosity is restricted almost exclusively to small-amplitude motions and 
that on nonlinear oscillations is virtually limited to motions of drops of inviscid or 
slightly viscous liquids. A goal of this paper is to remedy this situation. 

The system of interest is a free drop of incompressible, Newtonian liquid which 
is oscillating in dynamically inactive surroundings, i.e. a vacuum or a gas of 
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FIQURE 1 .  A liquid drop oscillating in a vacuum or a gas of negligible density and viscosity: 
( a )  definition sketch and ( 6 )  computational domain. 

negligible density and viscosity, as shown in figure 1 (a ) .  The drop has an undisturbed 
radius R, viscosity p, and density p,  and the surface tension of the liquid/gas 
interface is CT. The starting points for theoretical analysis of drop oscillations are 
the statements of mass and momentum conservation, i.e. the continuity and 
Navier-Stokes equations : - 

V . 6  = 0, (1) 

Here L is the wavelength of a disturbance along the interface (i.e. a lcngthscale that 
is proportional to the drop radius). Thus pL2/pt* is the ratio of the timescale for 
vorticity to diffuse from the interface into the interior of the drop to  the timescale 
for fluid motion t*.  The lengthscale A is a measure of the deformation of the interface. 
Finally, variables with tildes over them in ( 1 )  and (2) are dimensionless: velocity 5 
is measured in units of A / t * ,  time [is measured in units oft*, the gradient operator 

is measured in units of L-l, pressure 9 is measured in units of some characteristic 
pressure p*, and viscous stress ? is measured in units of p(A/ t* ) /L .  Drastically 
different flow regimes result as pL2/,ut* and AIL vary between 0 and co (cf. Patzek 
et aE. 1991 and figure 2). 

By means of a linearized encrgy stability analysis, Rayleigh (1879) analysed the 
infinitesimal-amplitude (AIL -+ 0) oscillations of a free, inviscid (pL2/pt* + a), 
incompressible drop. Rayleigh expressed the fundamental modes of oscillation in 
terms of Legendre polynomials, Pn, n = 2 , 3 , 4 ,  . . . , and calculated the corresponding 
frequencies. Lamb (1932) determined the effect of small viscosity and later Reid 
(1960) derived the equation that describes the effect of arbitrary viscosity on the 
infinitesimal-amplitude oscillations of drops. Finally, Prosperetti (1980) carried out 
a detailed numerical study to determine once and for all the effect of arbitrary 
viscosity on the infinitesimal-amplitude oscillations of drops. A century after 
Rayleigh's ( 1879) pioneering work, Tsamopoulos & Brown ( 1983, hereafter referred 
to as T&B), analysed the small- to moderate-amplitude ( A I L  1)  inviscid 
oscillations with a Poincark-Linstedt, expansion technique that extends Rayleigh's 
analysis to second order for certain combinations of mode coupling, and allows 
solutions for periodic motions resulting from initially second-, third-, and fourth- 
harmonic oscillations, i.e. n = 2, 3, and 4. Largc-amplitude (AIL = O ( 1 ) )  inviscid 
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FIGURE 2. A liquid drop oscillating in a vacuum or a gas of negligible density and viscosity: 
previous work and opportunities for analysis. 

oscillations were recently studied by Lundgren & Mansour (1988, hereafter referred 
to as L&M), and Patzek et al. (1991). L&M employed a boundary-integral method 
and focused on high-frequency (n 2 4) drop oscillations. Patzek et al. (1991) 
employed the Galerkin/finite-element method and focused on low-frequency 
oscillations. L&M also extended their method to account for the effects of an 
‘infinitesimal ’ amount of viscosity on drop oscillations. However, by its nature and 
as pointed out by L&M, the boundary-integral method cannot model nonlinear drop 
oscillations when viscous effects are ‘large ’. 

The perturbation analysis of T&B predicts, among other things, a decrease in 
frequency with increasing amplitude of oscillation. The predicted frequency shift of 
the second mode is in excellent agreement with the finite-element calculations of 
Patzek et al. (1991). Experiments of Trinh & Wang (1982), performed with 
acoustically levitated drops of low viscosity that were nearly neutrally buoyant in 
the surrounding liquid, and the few numerical simulations made with the marker- 
and-cell (MAC) method by Foote (1973), Alonso (1974) and Alonso, LeBlanc & 
Wilson (1982), of the axisymmetric oscillations of viscous liquid drops that are 
surrounded by a dynamically inactive environment, show systematic deviations 
from the inviscid predictions. Unfortunately, the small number of MAC calculations 
available is inadequate to draw general and quantitative conclusions on the effects 
of viscosity on finite-amplitude drop oscillations. Supplying this missing insight is 
another goal of this paper. 

The MAC method is complicated: it requires computations on a pair of finite- 
difference grids, one fixed and one moving (Harlow 1963). Nevertheless, Harlow, 
Amsden & Nix (1976) and Nix & Strottman (1982) have extended the MAC analysis 
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to  fluid motions in three dimensions. Because of its complexity, the MAC method 
cannot compete in computational efficiency with, for example, finite-element (see e.g. 
Gresho, Lee & Sani 1979) or spectral (see e.g. Orszag 1980) methods. Hence, in the 
past decade, MAC methods for solving free-surface flow problems have been 
superseded by both boundary-integral methods when they are applicable and finite- 
element and finite-difference methods in general (cf. Kistler & Scriven 1983; 
Tsamopoulos 1989, Patzek et al. 1991). 

Therefore, in this paper, a simple and flexible method based on the Galerkin/finite- 
element method is employed for studying large-amplitude oscillations of axi- 
symmetric, viscous free drops. The method features simultaneous solution of mass 
and momentum conservation equations for the velocity and pressure fields and free- 
surface location. The present method grew out of methods developed for simulation 
of steady (Saito & Scriven 1981 ; Kist,ler & Scriven 1983) and unsteady (Kheshgi & 
Scriven 1983) viscous free-surface film flows and inviscid drop oscillations (Patzek 
et al. 1991). 

Section 2 presents the theory and formulation of the governing equations. Section 
3 summarizes the Galerkin/finite-element weighted residuals and outlines the 
method for solving the transient problem. Section 4 present new results for 
moderate- and large-amplitude oscillations of axisymmetric drops and compares 
them, when possible, to previous investigations. 

2. Mathematical formulation 
The system is a drop of a Newtonian, incompressible liquid of volume V bounded 

by a free surface S(t)  that  separates the liquid from a fluid that exerts uniform 
pressure and negligible viscous drag on the drop. Variables and equations that follow 
are made dimensionless by measuring length in units of R and time in units of 
(pR3/cr)4. Also, tildes are suppressed hereafter for simplicity. 

In  spherical polar coordinates ( r ,  8, @) with the origin a t  the centre-of-mass of the 
drop, the axisymmetric drop shape and the field of outward-pointing unit normals to 
the drop surface are, respectively, 

fe, - f o  eo n, = 
(f z+ f ;);' (4) 

where f(8,t) is the interface shape function, (er,eo,e,) are the unit vectors in the 
coordinate directions and fo = af/aO - see figure 1 ( b ) .  

The fluid motion satisfies the Navier-Stokes system 

V . u = O  in V ,  ( 5 )  

Re - + v  V v  = V - T  in V.  (E * ) 
I n  (6), the Reynolds number Re = (1 /u )  (crR/p)i, where u = p/p,  and the stress tensor 
of a Newtonian fluid T = - p / + [ V v +  (Vu)'], where I is the identity tensor. 
Furthermore, in (6) and throughout this paper, the effects of gravitational forces are 
taken to be negligible compared to those due to  viscous, inertial, and surface forces. 

At the drop/ambient fluid interface, the dynamically inactive exterior phase 
exerts negligible shear and virtually hydrostatic pressure, which is taken to  be the 
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pressure datum. Then, the traction boundary condition, which expresses momentum 
conservation, is 

n,. T = Re (2H) n, on 8(t), (7)  

where 2H(x,,  t ) ,  twice the local mean curvature of 8(t), is given by the negative of the 
surface divergence V, of the outward unit normal n, to s(t) (Weatherburn 1927), i.e. 
2H(x,, t )  = -V,-n, .  

The drop shape is of course unknown a priori, but is a material surface provided 
there is no mass transfer across it. The kinematic condition is then simply 

n, - (u -u , )  = 0 on s(t). 
In ( 8 a )  o and us are the velocities of points located in V and on 8(t), respectively. 
Equivalently, the kinematic condition (8a )  can be restated in terms of the interface 
shape function f(8, t )  as 

D 
- [ r - f (O, t ) ]  = 0 on 8(t), 
Dt 

where D/Dt is the material derivative. Equation (8a), or ( 8 b ) ,  is not treated as a 
boundary condition, but instead is used to determine the unknown location of the 
interface (cf. Saito & Scriven 1981 ; Kistler & Scriven 1983; Kheshgi & Scriven 1983). 

Additionally, because the drop oscillations considered are axisymmetric, 

fo = 0 at 8 = O,x, 
n ’ . u = O  on S’, 

n’t’:T = 0 on S, 

where n’ and t‘ are unit vectors that are perpendicular and parallel to the axis of 
symmetry S’ (figure l b ) .  

We seek oscillatory solutions of the nonlinear, time-dependent partial differential 
equations (5)-(6) subject to boundary conditions (7)-( 11) .  Initial conditions must be 
specified to complete the mathematical statement of the problem. In this paper, 
attention is restricted to situations in which the drops are released from an initial 
static deformation 

S(0) = So, (12) 

u(x, 0) = 0, p ( x ,  0) = 0, (13) 

where X E  V. Such an initial condition is realized in experiments by means of acoustic 
and/or electric fields (see e.g. Trinh & Wang 1982; Scott, Basaran & Byers 1990). 
Two types of initial drop shapes are considered here. The first is a prolate or an oblate 
spheroid 

(14) 

where a is the length of the semi-major axis of the spheroid and b is the length of its 
semi-minor axis. The two dimensionless axis lengths are so related that ab2 = 1 ,  
because the dimensional volume of the spheroidal drop is equal to that of a spherical 
drop of radius R. The second is a drop shape whose departure from a sphere is 
proportional to the nth spherical harmonic 

f(e,O)=y,[l+f,P,(cose)] for O G O G K ,  n = 2 , 3  ,... ~ (15) 
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where f, is the amplitude of the initial deformation. The multiplicative factor y,, is 
a function off, and ensures that drops subjected to different initial deformations all 
enclose the same dimensional volume 3 R 3  (or dimensionless volume $n). Thus 

for n = 2, 
35 

"' = 35+ 21f + 2f: 
' I  

for n = 3, 
y3 = 

for n = 4, 
3003 

y4 = 3003 + 1001f: + 54f: 

for n = 5. 
11  

Y 6 = m  

Spherical harmonics corresponding to n = 0 and 1 are not considered because the 
n = 0 mode violates the constraint that the drop volume remains fixed and the n = 1 
mode moves the centre-of-mass of the drop. Also, disturbances of large n are not 
used here because a finite basis set is incapable of representing them accurately. 

The oscillations of liquid drops considered in this paper are therefore governed by 
two parameters : (i) a Reynolds number, Re, and (ii) some measure of the initial drop 
deformation. For spheroidal deformations, a convenient measure of the initial 
deformation is the prolate aspect ratio a/b, or its reciprocal the oblate aspect ratio 
b/a.  Henceforward, aspect ratio will stand for prolate aspect ratio unless otherwise 
stated. For spherical harmonic deformations, a convenient measure of the initial 
deformation is the disturbance amplitude f,. Moreover, for second-spherical- 
harmonic deformations, it is sometimes useful to present results in terms of a/b 
instead off, ; in this case a/b  = (1 +f,)/( 1 -if,). 

3. Galerkinlfinite-element analysis 
Conservation equations (5)-(6) are solved in this paper by the Galerkin/finite- 

element method in the mixed interpolation sense (see e.g. Huyakorn et al. 1978). The 
Galerkin weighted residuals of the continuity equation ( 5 )  and momentum equations 
(6) are 

R,,,=Jv$*V.udV=O, i = l ,  ..., M ,  

Rt,* = pie) = /v#'ek- [Reg+u-Vu)-V.T]dV= 0, i = 1, ..., N ,  (21) 
R I ~  r 

where ek is either er or e,. Here M is the number of finite-element basis functions @. 
used in representing the pressure 

and N is the number of finite-element basis functions q5' used in representing the 
velocity 
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In (23) u and v represent the 8- and r-components of the velocity, respectively. 
Residuals of the kinematic condition (8) weighted by a set of basis functions $*(8), 
that is a subset of the set of basis functions $#(r ,8 ) ,  furnish the additional NB 
equations needed to determine the drop shape : 

r 

The free surface is represented as 

The p,, ut, vi and ft are the unknown coefficients. 
The residuals of the momentum equations can be simplified by (a) applying the 

divergence theorem to the stress terms in (21) and (b) incorporating into the resulting 
expression as natural boundary conditions the traction boundary conditions (7) and 
(1 1) along the drop surface and the axis of symmetry : 

2H($'e,).ndS = 0, i = 1, ..., N .  (26) 

The surface divergence theorem specialized to a closed surface (Weatherburn 1927), 

2H($'e,).n d8 = V,. ($*e,) ds, (27 ) -Js I, 
is then applied to the curvature term in (26). For an axisymmetric surface, it can be 
shown, using relations found in standard textbooks on vectors and tensors (see e.g. 
Aris 1962), that 

where = d$*/d9. 
The drop volume V = ((8, r )  : 0 < 9 < x ,  0 < r < j (9 ,  t ) }  is partitioned or tessellated 

into a set of No x Nr quadrilateral elements. The elements are bordered by the j k e d  
spines (Kistler & Scriven 1983) 92t-l 

( i -  1) x e2r-1 = - , i =  1 ,..., No+l, 
No 

which move proportionally to the free surface along the spines. In this paper, the 
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spines are uniformly spaced coordinate lines and the weights wZi-, are to be defined 
shortly, Equations (30) and (31) prescribe the positions of only the vertex nodes of 
the elements. Mid-side and mid-element nodes are located by rcquiring mid-element 
spines to satisfy O,, = i(82t-1 + 02i+1), i = 1, . . . , N*, and by requiring the weights to  
satisfy wzj = i(w,,-, + ~ ~ , + ~ ) , j  = 1, . . ., N,.. 

The Galerkin weighted residuals of the continuity equation (20), the momentum 
equations (26) with (27)-(29), and the kinematic condition (24) require continuity of 
the basis functions that represent the dependent variables (Strang & Fix 1973) ; thus 
we choose admissible Co basis functions. In the current mixed-interpolation 
formulation, nine-node biquadratic basis functions are used for the velocity field and 
four-node bilinear ones are used for the pressure field. The free surface is interpolated 
in terms of the standard set of three one-dimensional, quadratic basis functions. 

The Galerkin/finite-element weighted residuals are a large set of nonlinear ordinary 
differential equations in time. Time derivatives are discretized at the pth time step, 
At = t, - t,-,, by either first-order backward-differences or second-order trapezoid 
rule. With time discretization in place, the resulting system of nonlinear algebraic 
equations is solved by Newton iteration. Initial conditions specified need not satisfy 
the governing equations and boundary conditions exactly. Four backward-difference 
time steps with fixed At, provide the necessary smoothing (Luskin & Rannacher 
1982) before the trapezoid rule is used. A first-order forward-difference predictor 
is used with the backward-difference method. A second-order Adams-Bashforth 
predictor is used with the trapezoid rule. The L ,  norm of the correction provided by 
Newton iteration, Jldp+lllm, is an estimate of the local time truncation error of the 
trapezoid rule (Gresho et al. 1979). The time step is chosen adaptively by requiring 
the norm of time truncation error a t  the next time step to be equal to a prescribed 
value, e (Gresho et al. 1979), 

P 

Atp+, = A~&/l l~ ,+1I lm)~.  (32) 

Relative error of 0.1 YO per time step, e = 
The algorithm was programmed in FORTRAN and the resulting code was run on a 

Cray X-MP/4 supercomputer and an IBM 6000-320H workstation at the Oak Ridge 
National Laboratory and a Cray Y-MP/4 supercomputer a t  the Florida State 
University (FSU) Computer Center with Hood’s (1976) frontal solver, as modified 
and improved by Silliman (1979), Walters (1980), Kheshgi & Scriven (1983), and 
Coyle ( 1984). 

is prescribed here. 

4. Results 
The computations were carried out by dividing the drop into a set ofN, = 8, 12, or 

16 uniformly spaced elements in the &direction and N, = 4, 6 , 8 ,  or 12 uniformly and 
non-uniformly spaced elements in the r-direction. Table 1 shows the meshes used, the 
number of unknowns for each mesh, and typical computation times. For the meshes 
that contained elements that were non-uniformly spaced in the r-direction, the 
element sizes in the r-direction formed an arithmetic progression: along a spine of 
fixed 8, the length of the side along the r-direction of the N t h  element from the drop 
surface wasf(0, t) times N/;(N,(N, .+ l)) ,  A’ = 1,  ..., N,.. Because quadratic elements 
were used, the ratio of the radial distance measured along a spine between a node on 
the free surface and the one closest to it in the interior of the drop, Ar, to the distance 
from the origin to the drop surface, f(0, t ) ,  was &for mesh IIIB and for mesh IVB. 

Tables 2 and 3 show the sensitivity of calculated solutions to mesh refinement (cf. 
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CPU 
Mesh No N,  N, Nu time 

I 8 4 32 368 1.0 
I1 12 6 72 766 2.7 
I11 16 8 128 1308 5.5 

IIIB 16 8 128 1308 5.5 
I V  16 12 192 1904 11.1 

IVB 16 12 192 1904 11.1 

TABLE 1. CPU time per time step, measured in central processor seconds, on the IBM 6000-320H. 
N ,  is the number of elements; Nu the number of unknowns. Meshes I, 11, 111, and I V  have 
uniformly spaced elements in both 0- and r-directions. Meshes IIIB and IVB have uniformly 
spaced elements in the @-direction, but employ variable-sized elements in the r-direction. 

0.01 

Mesh 71 (alb),l 
I 2.2909 1.0061 
I1 2.2925 1.0061 
I11 2.2917 1.0061 

IV 2.2904 1.0061 
IIIB 

IVB 

- - 

- - 

0.5 

71 (alb),l 
2.4416 1.2912 
2.4434 1.2908 
2.4432 1.2909 
2.4436 1.2908 
2.4435 1.2909 
2.4436 1.2909 

0.9 

71 (alb),l 
2.6593 1.4357 
2.6600 1.4349 
2.6602 1.4343 
2.6604 1.4343 
2.6604 1.4343 
2.6604 1.4343 

TABLE 2. Sensitivity of calculated solutions to mesh refinement at Re = 10: duration of first 
period, 71, and aspect ratio after one period, ( ~ / b ) , ~  

0.01 0.5 

Mesh 71 (a/b),l 
I 2.2297 1.0136 
I1 2.2286 1.0136 
I11 2.2287 1.0136 

IITB 
IV 

IVB - 

- - 

- - 

- 

71 (alb)TI 
2.4609 1.7882 
2.5002 1.7711 
2.4783 1.7624 
2.4805 1.7622 
2.4788 1.7622 
2.4800 1.7622 

0.9 

71 (alb)71 
2.7507 2.3522 
2.8413 2.3272 
2.9028 2.3315 
2.9049 2.3307 
2.9059 2.3305 
2.9055 2.3307 

TABLE 3. Sensitivity of calculated solutions to mesh refinement at Re = 100: duration of first 
period, 71, and aspect ratio after one period, (alb),, 

table 1 ) .  These tables make plain that as Reynolds number and/or drop deformation 
increase, successively finer discretizations have to be used to obtain results that are 
mesh-independent. As Re-+ co, a vortical layer of thickness Re-: at the interface has 
to be resolved (Lamb 1932, L&M). Tables 2 and 3 show that Mesh I11 of table 1 is 
adequate even when Re = 100 and fi = 0.9 : this is because if the number of elements 
in the r-direction is increased by 50Y0, as in going from Mesh I11 to Mesh IV, the 
period changes by about 0.1 YO and the aspect ratio after one period changes by about 
0.04 YO. Note that the period of oscillation is not a constant quantity during large- 
amplitude oscillations of viscous drops. When an oscillation is started from an initial 
state that is a second-spherical-harmonic shape or a spheroid, a period of oscillation 
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Re = 10 Re = 100 

~ F E  73 (‘/6)r,FE E ~ F E  7 E  ( W , , F E  W),~ E 

2.2904 - 1.0061 - 2.2287 2.2218 1.0136 1.0135 

TABLE 4. Period, 7, and aspect ratio after one period, (alb),: comparison of finite-element 
predictions and linear theory. FE denotes finite-element solution; E the exact solution from (33). 
FE solutions were obtained with f i  = 0.01. Numbers in parentheses show the percentage error in 
the finite-element solution relative to the exact solution from linear theory. Kote that here the 
period does not change because the drops are undergoing small-amplitude oscillations. 

(0.3 Yo) (0.01 Yo) 

is the time between successive maxima (minima) in aspect ratio for oscillations 
started from a prolate (oblate) deformation. These are points that  are returned to in 
what follows. Calculations a t  Reynolds numbers as high as 500 have been carried out, 
but require finer discretizations in the radial direction than those used in table 1 to 
achieve the same level of accuracy. For a drop oscillating in a dynamically inactive 
environment, the flow in the boundary layer a t  the drop surface becomes dominant 
when the Re exceeds 1000 (cf. L&M). The excellent agreement between the uniform 
and non-uniform mesh results reported in tables 2 and 3 when Re Q 100 is consistent 
with this fact and also demonstrates the insensitivity of the results reported here to 
further mesh refinement. Consequently, the maximum Reynolds number for which 
results are reported in this paper is 100. Thus, small- and moderate-amplitude 
oscillations are analysed with Mesh I1 in this paper and large-amplitude oscillations 
are analyzed with Mesh 111. 

Table 4 compares theoretical predictions made by means of Galerkin/finite- 
element analysis with those of linear theory (Yrosperetti 1980) for drops undergoing 
small-amplitude oscillations. During linearized or infinitesimal-amplitude oscil- 
lations of a drop that is released from the nth spherical-harmonic configuration, the 
drop shape varies in time as e-flnt. The dispersion equation governing, p, is nonlinear 
and in general must be solved numerically. Prosperetti (1980) presents graphs that 
show the variation of the real and imaginary parts of p, with Reynolds number. 
However, when viscous effects are small compared to inertial ones, Prosperetti 
(1980; cf. Lamb 1932) has also shown that 

where wk = n(n- 1)  (n + 2) is the square of the frequency of oscillation of a drop of an 
inviscid liquid (Rayleigh 1879) and b ,  = (n- 1 )  (2n+ l)/Re is the damping constant 
for small viscosity (Lamb 1932), i.e. Re 9 1.  Table 4 shows that finite-element 
predictions of the period of oscillation and the aspect ratio after one period are in 
excellent agreement with (33) when Re = 100. By way of contrast, the percentage 
error in decay factors predicted by the MAC calculations of Foote (1973) in situations 
when (33) is valid is roughly 3%, i.e. a t  least an order magnitude higher than the 
error in the finite-element results reported here. At Re = 10, the small-viscosity limit 
of linear theory predicts that the period 7 = 2.2570 and the aspect ratio after one 
period of oscillation (a /b) ,  = 1.0049. Prosperetti (1980) has shown, as expected, that 
a t  Re = 10 (33) is only an approximation : the actual damping rate is lower than that 
given by (33) and the period (frequency) of oscillation is slightly longer (lower) than 
that predicted by (33). Table 4 accords with both of those predictions. 

Figure 3 shows the dynamic response of a slightly viscous axisymmetric drop 
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FIGURE 3. Drop released from a static deformation. Initial shape : second (prolate)-spherical 
harmonic; Re = 100, fa = 0.9. The time t is listed above each drop shape in figures 3, 6, and 20 
because the time step is chosen adaptively. 

which is released from a static deformation proportional to the second-spherical 
harmonic. Plainly, large-amplitude oscillations of a drop subjected to an initial 
deformation that can be represented by a single pure mode, here n = 2, show signs 
of other harmonics. The time corresponding to the last shape shown in figure 3 
exceeds the first period of oscillation by approximately 10 YO. The drop shape at time 
t = 0 is re-entrant along the equator, i.e. 0 = in. Linear theory predicts that the 
drop shape would be re-entrant along the equator at the end of each period, t = 71, 
T ~ ,  . . . , Figure 3 shows that this feature is absent during large-amplitude oscillations, 
in agreement with the asymptotic results of T&B and MAC computations for 
moderate-amplitude oscillations of Foote (1973). However, the effect of finite 
viscosity on the evolution in time of the various modes that arise during large- 
amplitude oscillations was heretofore unknown and is analysed below. 

To gain insight into the mode-coupling phenomena displayed during drop 
oscillations, as in figure 3, it is advantageous to decompose a drop shape into its 
linear modes (cf. L&M, Patzek et al. 1991): 

The coefficients c,( t )  in (34) are the amplitudes of the modes and are calculated here 
by Gaussian quadrature, after exploiting orthogonality of Legendre polynomials. 
Calculations show that when the amplitude of the oscillations is small, e.g. when the 
initial deformation amplitude f n  < 0.01, an oscillation that is started from a single 
mode remains virtually so for all time. By contrast, figure 4 shows that the situation 
is quite different when a drop is released from an initial static deformation having a 
large amplitude. Not only is there a shift in the frequency of oscillation of the 
primary mode (see below), but large-amplitude oscillations of drops that are released 
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FIQURE 5. Decomposition of the shape of a drop undergoing large-amplitude oscillations into its 
linear modes. Effect of increasing viscous forces over inertial forces relative to figure 4 on variation 
in time of the first few even Fourier-Legendre coefficients c,( t )  in (34). Initial shape: seeond- 
spherical harmonic ; Re = 10, fi = 0.5. 

from a second-spherical harmonic deformation show signs of other harmonics. 
Equally important, numerical experiments with drops released from initial static 
deformations that are pure even harmonics show an absence of odd harmonics. This 
finding agrees with the asymptotic analysis of T&B which is valid for strictly periodic 
motions of inviscid drops, but hitherto had not been demonstrated during nonlinear 
oscillations of drops having arbitrary viscosity. Figure 4 also shows that the primary 
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FIGURE 6. Drop released from a static deformation. Initial shape : prolate spheroid ; Re = 100, 
a/b = 3. 

mode dominates the other modes during such large-amplitude oscillations started 
from an initial two-lobed configuration. However, this would not be the case were 
resonant mode interactions present -see below. Figure 5 shows the effect of in- 
creasing viscosity on mode coupling during initially second-harmonic oscillations. 
Indeed, figures 4 and 5 imply that finite viscosity may have a much bigger effect on 
mode coupling phenomena and, in particular, on resonant mode interactions than 
one might have anticipated based on results of computations incorporating only an 
infinitesimal amount of viscosity. Moreover, figure 4 and especially figure 5 show that 
the effect of viscosity is to damp out the higher modes more quickly than the lower 
ones. 

Calculations were also carried out for situations in which drops were released from 
other initial two-lobed configurations. Figure 6 shows sequences of shapes that result 
when a drop is released from an initial prolate spheroidal configuration. 

Figures 7 and 8 compare the nonlinear response of drops released from different 
initial two-lobed configurations. It is at  first sight puzzling that the dynamics are so 
similar for two drops that are released from prolate configurations having the same 
initial aspect ratio a lb  = 2, as in figure 7 ,  but so dissimilar for two drops that are 
released from oblate configurations having the same initial aspect ratio a/b = 0.5, as 
in figure 8. The major differences and similarities in the response of these shapes can 
be rationalized by examining the variation of the surface area (energy) of the various 
two-lobed shapes with increasing initial drop deformation ; the subtle differences, 
however, require an examination of the evolution with time of the various linear 
modes given by (34). 

Here surface energy is measured relative to a sphere having the same volume as 
the drop 
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FIUURE 7. Dynamic response of prolate drops having slightly different initial shapes : one released 
from a static deformation proportional to the second-spherical harmonic, f, = 0.5 (-), and the 
other from a prolate spheroidal configuration, a/6 = 2 (----) ; Re = 100. 
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FIUURE 8. Dynamic response of oblate d r o p  having slightly different initial shapes : one released 
from a static deformation proportional to the second-spherical harmonic,f, = -0.4 (-), and the 
other from an oblate spheroidal configuration, a/6 = 0.5 (----) ; Re = 100. 

t 

Equation (35) is already dimensionless because energy is measured in units of 47cuR2. 
For small deformations, i.e. e < 1, where E = (a /b)  - 1 for prolate shapes and 8 = 
@/a)  - 1 for oblate shapes, i t  is easy to show that 

E,  = &e2+pe3+ ... . (36) 
For the initial shapes considered, p = -% for a prolate second-spherical harmonic 
shape, ,!3 = -a for an oblate second-spherical harmonic shape, p = -& for a 
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FIGURE 9. Surface energies of initial drop shapes : spherical harmonic shapes versus spheroids. 
, Prolate spheroid ; -, n = 2 (oblate) ; ......, 12 = 2 (prolate) ; ----, oblate spheroid. 

prolate spheroid, and /3 = --* for an oblate spheroid. Figure 9 shows the variation 
of the surface energy with aspect ratio over a wide range of deformations. First, the 
surface areas (energies) of the various two-lobed shapes differ little from each other 
for small to  moderate drop deformations. Hence, the dynamic response of these 
shapes is very similar when analysed by asymptotic methods or theories based on 
moderate-amplitude numerical calculations. More interesting, the surface areas of a 
prolate spheroid and a prolate second-spherical harmonic shape are virtually the 
same over a wide range of ihitial drop deformations, whereas the surface area of an 
oblate spheroid differs more and more from that of an oblate second-spherical 
harmonic shape as drop deformation increases. 

For the prolate shapes of figure 7 which have the same initial aspect ratio, the 
surface area (energy) of the spherical harmonic shape exceeds that of the spheroidal 
shape by only 0.11 %. Therefore, it is not too surprising that the dynamic responses 
of the two shapes are so similar. However, what is interesting here is the radically 
different make-up of the dominant modes of the two configurations at early times, 
which manifests itself as a slight difference between the two curves at short times, 
but gives way to a response that is virtually identical a t  large times. At t = 0, aside 
from the zeroth mode (which is required for volume conservation), the spherical 
harmonic shape is pure second mode. However, at that instant, the spheroidal shape 
is composed, in addition to the zeroth mode, of some second harmonic, whose 
amplitude is smaller than that present in the spherical harmonic shape, and fourth 
and other even harmonics, with each harmonic having an amplitude about a third of 
the preceding one. After a half period when the two drops have attained their 
maximum oblate deformation, both display signs of second and higher even 
harmonics. For the spheroidal drop, the absolute value of the amplitude of the 
second harmonic is roughly what it was at t = 0, but the absolute value of the 
amplitude of the fourth harmonic is smaller by an order of magnitude than what it 
was initially. The consequence of this fact is the attainment by the spheroidal drop 
of a maximum oblate aspect ratio that is roughly equal to its initial maximum 
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FIGURE 10. Time variation of (a) surface, (6)  kinetic and (c) total energies and (d )  change in drop 
volume for a drop released from a deformation proportional to the second-spherical harmonic 
during large-amplitude oscillations. Re = 100 and fi = 0.7.  

prolate aspect ratio. For the spherical harmonic drop after a half-period, the 
magnitude of the second harmonic is smaller than that of the spheroidal drop, but 
the magnitude of the fourth harmonic is about ten times larger than that of the 
spheroidal drop. At t x 7.3, when both drops are near maximum prolate deformation 
after several oscillations, the modal decomposition (34) shows that the amplitude of 
the second mode is virtually the same for both shapes and the remaining modes are 
all an order of magnitude smaller than the dominant mode. As time advances, the 
motions started from these two initial conditions become more similar as the higher 
modes are damped out more quickly than the lower ones owing to the stronger 
damping effect of viscosity on these higher modes (see figures 4 and 5 ) .  

On the other hand, although the oblate shapes of figure 8 both have the same 
initial aspect ratio, the surface area of the spheroidal shape exceeds that of the 
spherical harmonic shape by 3.63 YO. Therefore, not surprisingly for these oblate 
drops, the short time as well as the long time response is different. Indeed, the 
difference in the resulting response is apparent just after a half-period, i.e. when the 
drops have attained their maximum prolate deformation. Figure 8 shows that the 
drop released from an initial oblate spheroidal configuration attains a maximum 
prolate deformation a/b  roughly equal to 2. Thenceforward the maximum prolate 
and oblate aspect ratios of the initia.lly oblate spheroidal drop exceed those of the 
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FIUTJRE 11. Percentage of the first period spent in prolate form versus maximum prolate aspect 
ratio when a drop is released from a deformation proportional to the second-spherical harmonic. 
-, Results of T&B; ----, Foote (1973); 0 ,  Re = 100; A, Re = 10. 

initially oblate spherical harmonic drop. Evidently, this results in a decrease 
(increase) in the frequency (period) of oscillation of the former over the latter, as 
shown clearly by the long term response depicted in figure 8. 

Further insight into the oscillations can be gained by examining the time variation 
of surface and kinetic energies. Kinetic energy is calculated as 

E ,  = 1 Lv ' r '  sin 8 dr do. (37) 

Equation (37) is already dimensionless because kinetic energy too is measured in 
units of 47rcR'. Calculations (not shown) demonstrate that surface and kinetic 
energies of a drop undergoing small-amplitude oscillations vary sinusoidally in time, 
in accordance with Rayleigh's (1879) linearized analysis, save for decreases in time 
for both and their sum, the total energy, E,, due to the presence of viscosity. Large- 
amplitude or nonlinear oscillations exhibit richer physics, as figure 10 demonstrates. 
Figure 10 ( a )  for the variation in time of the drop surface energy shows that viscous 
drops that are released from an initially second-harmonic configuration spend more 
of their time in the prolate form than in the oblate form : this is a point to which we 
return below. Figure 10 also shows that even in calculations involving fairly large- 
amplitude oscillations (the initial prolate aspect ratio = 2.615), the method used 
conserves volume to within better than 0.1 Yo during the first six periods, which is on 
the order of the time truncation error. This is yet another testimony to the accuracy 
of the results obtained in this paper. By contrast, the volume change in the MAC 
computations of Foote (1973) was on the order of 1 % after only a single period of 
oscillation and for oscillations during which the maximum aspect ratio was less 
than 2. 

Figure 11 compares finite-element results for shape deformations that are initially 
second-harmonic to perturbation results of T&B and MAC calculations of Foote 
(1973) for the percentage of time spent in prolate form. The aspect ratio shown is the 
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FIQLJRE 12. Effect of Reynolds number on large-amplitude oscillations when a drop is released from 
a deformation proportional to the second-spherical harmonic : transition from underdamped 
oscillations to an aperiodic return to the spherical rest state. f, = 0.4, and -, Re = 1 0 0 ;  ---, 
Re = 10; ____,Re  = 1; ...... , Re = 0.1. 

initial aspect ratio and the percentage of time spent in each configuration refers to  
the first period. The results show that more viscous drops spend less time in prolate 
form than less viscous or inviscid drops, in agreement with experimental findings 
(Trinh & Wang 1982). Foote’s (1973) result follows from his comments that excess 
time varied linearly with oscillation amplitude and the drop spent 14% more of its 
time in the prolate form than in the oblate form during an oscillation started from 
a configuration having an aspect ratio of 1.7. 

Figure 12 shows the effect of increasing viscous forces relative to inertial forces on 
large-amplitude drop oscillations that are all started from the same initial 
deformation. The nature of the oscillations changes from underdamped when Re = 
100 and Re = 10, to critically damped when Re = 1,  to overdamped when Re = 0.1. 
Thus, perhaps with the exception of very early times t < 1 (see below), the apparent 
damping rate attains a maximum at  a non-zero value of the Reynolds number as Re 
decreases from a large value to  zero. Similarly, Prosperetti (1980) has observed the 
same effect in his detailed studies of the dispersion equation that governs the 
infinitesimal-amplitude oscillations of viscous drops. Furthermore, we have carried 
out calculations with fi = 0.01 and have shown that the transition from under- 
damped oscillations to an aperiodic return to the spherical rest state occurs for 
1.3 < Re < 1.4, in agreement with the results of Prosperetti (1980). For Reynolds 
numbers smaller than this amount, linear theory shows that there are two decay or 
damping rates. The damping rate for one of these, which is referred to  as the rapidly 
decaying aperiodic mode, goes to  infinity as Reynolds number goes to  zero. The 
damping rate for the other one, which is known as the least damped or the slowly 
decaying aperiodic mode, goes to  zero as Reynolds number goes to  zero. The fast 
decaying mode is therefore quickly damped out and it is the slowly decaying 
aperiodic mode that dominates the motion a t  large times (e.g. Miller & Scriven 1968; 
Prosperetti 1980). 
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FIGURE 13. Effect of Reynolds number on large-amplitude underdamped oscillations when a drop 
is released from a deformation proportional to the second-spherical harmonic. f, = 0.5 and -, 
Re = 100; ---, Re = 40; ----, Re = 10; ......, Re = 5. 
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Calculations have also been carried out to determine the value of the critical 
Reynolds number beyond which oscillations no longer occur and a drop that initially 
suffers a finite-amplitude deformation returns to the spherical rest state aperi- 
odically. For spherical harmonic shapes, disturbance amplitudes ranged between 
-0.4 < fi c 0.9; for spheroidal shapes, aspect ratios ranged between 0.5 < a /b  < 2. 
In  all cases, it was found that the critical value of the Reynolds number is between 
1.3 < Re, < 1.4, a remarkable fact. That the critical value of Re, is independent of 
the initial deformation ought to be confirmed experimentally, though no such 
experiments have been performed to date. 

Figure 13 shows the effect of increasing viscous forces relative to inertial forces on 
large-amplitude, underdamped oscillations that are all started from the same initial 
deformation. The dynamic response to a finite-amplitude disturbance is made 
interesting because of the presence of two competing effects. On the one hand 
viscosity tends to  retard the motion, thereby slowing the flow and increasing the 
period of oscillation. On the other hand, because of viscous dissipation, the drop 
undergoes oscillations having smaller and smaller aspect ratios as time passes, which 
tends to decrease the period of oscillation. Figure 13 shows that as Re decreases from 
100 to 40, the period of oscillation decreases with it. However, as the Reynolds 
number continues to decrease, a point is reached beyond which a further decrease in 
Re causes the period to increase. This is not surprising on account of figure 12, 
because a t  a critical value of the Reynolds number the nature of drop motion changes 
from underdamped oscillations to  an aperiodic return to the spherical rest state and 
the period of oscillation goes to  infinity. Thus, for a fixed value of the initial 
deformation, the period attains a maximum value a t  a Reynolds number that 
depends on the value of that initial deformation -this is a point to  which we return 
to below. Figure 13 also brings out one reason (others are given below) to be able to 
follow accurately the drop motion for several periods, which has not been the case 
with previous studies of viscous oscillations (cf. Foote 1973). 

7 FLM 241 
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FIGURE 14. Effect of initial disturbance amplitude on damping of drop motion under conditions of 
low-Reynolds number flow : drop released from a deformation proportional to the second-spherical 
harmonic. Re = 1.0 and -, fz = 0.1; ---,fz = 0.3; ----,fi = 0.5; . . . . . . ,fz = 0.7. 
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FIGURE 15. Percentage change in frequency during the first period of oscillation versus maximum 
prolate aspect ratio when a drop is released from a deformation proportional to the second- 
spherical harmonic. Here the frequency change is measured relative to the frequency of 
infinitesimal-amplitude oscillations of inviscid drops. -, Results of T&B; 0, Re = 100; A, 
Re = 10. 

Figure 14 demonstrates the effect of the initial disturbance amplitude on the 
damping of drop motion for low-Reynolds-number flow. Plainly, the larger the initial 
deformation, the longer it takes for a drop to return to the spherical rest state. 
However, changing the magnitude of the disturbance amplitude does not alter the 
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FIGURE 16. Percentage change in frequency during the first period of oscillation versus maximum 
prolate aspect ratio when a drop is released from a deformation proportional to the second- 
spherical harmonic. Here the frequency change is measured relative to the frequency of 
infinitesimal-amplitude oscillations. Legend as figure 15. 

mode of return to rest: evidently, if the motion induced by an infinitesimal- 
amplitude disturbance is aperiodic, so is the motion induced by a large-amplitude 
disturbance. Furthermore, this response remains qualitatively unchanged as the 
Reynolds number is decreased from 1 to 0.1. 

Calculations carried out for Reynolds numbers ranging from Re, to 100 reveal that 
the frequency (period) of oscillations falls (rises) as disturbance amplitude fi rises. 
Figures 15 and 16 show the percentage change in the frequency of oscillation as a 
function of the maximum prolate aspect ratio for drops released from an initially 
second-spherical harmonic configuration. Here, the aspect ratio is the initial aspect 
ratio and the frequency change is that during the first period of oscillation. In figure 
15, the frequency change is measured relative to the celebrated frequency of 
infinitesimal-amplitude oscillations of inviscid drops due to Rayleigh (1879), i.e. w is 
the actual frequency of oscillation and wo = wR in (33). I n  figure 16, the frequency 
change is measured relative to the frequency of infinitesimal-amplitude oscillations 
w,,, which was calculated by Prosperetti (1980 ; also, see above). As Prosperetti (1980) 
showed, the frequency of infinitesimal-amplitude oscillations decreases mono- 
tonically as the relative importance of viscosity increases over inertia. However, the 
decrease is virtually negligible until the Reynolds number becomes small enough, as 
Prosperetti found and figure 15 makes evident. Figure 15 also points to a big 
difference between infinitesimal-amplitude and finite-amplitude oscillations of drops 
released from the same initial configuration, as alluded to earlier with respect to 
figure 13: for linear oscillations the frequency is a maximum when Re+ co, but for 
finite-amplitude oscillations the frequency is a maximum a t  a Reynolds number 
other than Re + co. Figure 16 shows that the frequency of oscillation of viscous drops 
decreases with the square of the initial amplitude of deformation as Re gets large for 
moderate-amplitude oscillations, but the change becomes less dramatic as Re falls 
and/or the initial amplitude of deformation rises. All of the trends shown in figures 
15 and 16 also accord with the experimental findings of Trinh & Wang (1982). By 
way of example, if all the physical parameters are held fixed, Re falls as drop radius 

7-2 
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FIQURE 17. Variation of the period of oscillation and times spent in prolate and oblate forms over 
several periods of oscillation. Initial shape : second-spherical harmonic and f, = 0.5. -0- 7, ; ---o--- 
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falls. Thus, figures 15 and 16 show for the first time that systematic deviations from 
inviscid theories that  Trinh & Wang (1982) observed, but were unable to explain, as 
drop size decreased is a large-viscosity effect. 

Figure 17 shows how the period of oscillation T,, that  is the time between 
successive maxima in aspect ratio in figure 13, varies with the period number during 
large-amplitude oscillations of viscous drops released from initial states that are 
prolate second-spherical harmonic shapes. Also shown are the prolate time 7p, and 
the oblate time 7 0 , ~  as functions of the prolate and oblate cycle numbers. Because 
the first prolate part of such oscillations is actually a half-prolate cycle, the prolate 
time during the first cycle is defined to  be twice the time that i t  takes the drop to 
relax from the initial aspect ratio to an aspect ratio of one. Thereafter, the prolate 
and oblate times are simply the lengths of time that it takes the drop to go from an 
aspect ratio of one through to a maximum (minimum) in aspect ratio to an aspect 
ratio of one again. As time elapses, the period of oscillation and the time spent in the 
prolate configuration decrease, but the time spent in the oblate configuration 
increases. Figure 17 shows that when viscous forces are moderately large, Re = 10, 
the prolate time undergoes a sharp decrease especially during the first quarter of the 
first period of the oscillation. After about six periods, the prolate and oblate times are 
virtually the same and the period is essentially the value that it is for oscillations 
having an infinitesimal amplitude. By contrast, a t  Re = 100 the prolate and oblate 
times have not equalized by the end of the sixth period. Inspection of figure 13 shows 
that after 6 periods while the oscillations are virtually damped out when Re = 10, the 
aspect ratio is as large as 1.4 when Re = 100. That the period of oscillation 7, is 
virtually the same for Re = 100 and Re = 10 at the end of the sixth period is 
coincidental : the period for infinitesimal-amplitude oscillations is 2 x / 4 8  x 2.221 a t  
Re = 100 whereas i t  is 2.290 a t  Re = 10. I n  fact, a t  Re = 100 the prolate and oblate 
times have not yet equalized after as many twelve oscillations (figure 17 shows only 
the first six periods; also, cf. figure 13). 
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FIGURE 18. Effect of Reynolds number on the variation of the decay factor with 
disturbance amplitude. Initial shape : second-spherical harmonic. 
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FIGURE 19. Variation of the decay factor over several periods of oscillation. Initial shape : 
second-spherical harmonic. f, = 0.7. 

Figures 18 and 19 show how the decay factor or damping rate, defined as 

varies as a function of disturbance amplitude and period of oscillation for motions 
started from initially second-spherical harmonic deformations. In (38)) n is the 
period number and when n = 0, (a /b) -  1 is a measure of the initial drop defor- 
mation. In figure 18, the decay factor is that during the first period of the 
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FIGURE 20. Drop released from a static deformation. Initial shape : fourth-spherical 
harmonic: Re = 100, f, = 0.5. 

oscillation. Figure 18 shows for the first time that the decay factor is fairly insensitive 
to the initial disturbance amplitude during small- and moderate-amplitude 
oscillations : this explains why Trinh &, Wang (1982) found it difficult to draw definite 
conclusions based on their experimental observations, although they could perceive 
an increasing trend in damping rate with increasing drop deformation. At Re = 100, 
the decay factor goes from 0.05 when f, = 0.01 to 0.21 when f2 = 0.9. As the relative 
importance of viscous forces to inertial ones increases, the relative increase in the 
decay factor with the initial disturbance amplitude becomes more modest : at Re = 
10, the decay factor goes from 0.40 when f ,  = 0.01 to 0.65 when f ,  = 0.9. Figure 19 
shows how the decay factor varies with the period during large-amplitude oscillations 
( fi = 0.7). At all Reynolds numbers, the decay factor decreases with increasing 
period number. The decay factor changes most rapidly during the first period, the 
relative amount of the change increasing as Reynolds number increases. Thereafter, 
the decay factor changes only slightly with increasing time. The relative flatness of 
the curves for the decay factor after the first period also corroborates Trinh & Wang's 
(1982) experimental observation that the damping rate appears to  be independent of 
time for a drop that is released from a steady acoustic drive. Figure 19 makes plain 
why drop oscillations a t  moderate Reynolds numbers take so long to get damped out. 
Also, it is worth noting that a t  Re = 100, the decay factor at the start of the 
oscillations is more than three times that of infinitesimal-amplitude oscillations. By 
contrast, a t  Re = 10, the decay factor during the first period is less than 1.5 times 
that of oscillations having an infinitesimal amplitude. For drops undergoing 
underdamped oscillations, figures 18 and 19 show that the lower the Reynolds 
number the higher the damping rate. 

Modal decomposition of drop profiles that are seen during oscillations started from 
initial shapes that suffer deformations that are pure odd harmonics reveals the 
presence of odd as well as even harmonics : the same conclusion was reached by T&B 
and Patzek et al. (1991) in their studies of inviscid oscillations. However, there are 
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FIGURE 21. Disturbance amplitude a t  the pole, f(0, t )  - 1, as a function of time for a drop released 
from a static deformation proportional to the fourth-spherical harmonic. Re = 100; f4 = 0.3. 

t 

also striking differences between odd as well as even multi-lobed oscillations analysed 
here and by others. It is shown below that one of the differences is due to the proper 
accounting in this paper for the presence of a finite amount of viscosity. The other 
difference lies in the methods of analysis used : whereas both this paper and the works 
of L&M and Patzek et al. (1991) approach the problem of drop oscillations as initial- 
value problems, T&B's method, by its very nature, restricts them to time-periodic 
solutions. 

Figure 20 shows sequences of drop shapes that result for a drop that is released 
from an initially four-lobed spherical harmonic configuration. Figure 21 shows the 
disturbance amplitude at  the pole, f(0, t )  - 1, as a function of time for initially four- 
lobed oscillations. When Re > 2000, L&M found that every third amplitude peak is 
lower than the other two. Figure 21 and calculations at lower values of the Reynolds 
number show that when Re < 100 this is not the case initially. However, the new 
calculations also show that every third amplitude is lower than the other two at  large 
times, for example when dimensionless time exceeds 6 at Re = 100 in figure 21. 
Increasing the magnitude of the initial drop deformation does not affect this 
behaviour. Experimental verification of this finite-viscosity effect is pending. 

T&B found that at second-order in disturbance amplitude, only the zeroth, second, 
fourth, sixth, and eighth modes are excited and have modal amplitudes that oscillate 
a t  twice the frequency of the fourth (primary) mode. By contrast, L&M found that 
the situation is quite different in the context of an initial-value problem. To gain 
further insight into initially four-lobed oscillations and also to elucidate the effect of 
finite viscosity on such multi-lobed oscillations, figure 22 shows the amplitudes of the 
first few leading modes during the oscillations of a slightly viscous drop. Evidently, 
the dominant feature of the dynamics of the second mode is that it oscillates with the 
natural (Rayleigh) frequency of the second mode, mio) = 4 8 .  L&M have suggested 
that this second-mode excitation is caused by second-order quadratic coupling with 
the fundamental fourth mode. Physically, the second mode is an oscillator with 
natural frequency wi0) ,  but driven in proportion to the square of the fourth mode. 
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Therefore, the driving term can be decomposed into two linear modes: a constant 
contribution and another contribution that is sinusoidal a t  twice the fourth-mode 
frequency. The constant contribution produces a second-mode oscillation that is 
offset from zero amplitude, as shown by the subplot of the amplitude of Pz versus 
time in figure 22. When Re > 2000, L&M found that a small ripple, the amplitude of 
which decreases with increasing time, is superimposed on this primary oscillation at 
double the frequency of the fourth mode. Plainly, the new results show that the effect 
of finite viscosity is to damp out this small ripple during the first period of oscillation. 
Experiments performed with levitated drops on Earth (e.g. Trinh & Wang 1982) and 
in the reduced gravity environment of space are now a t  such a level of sophistication 
that it should be possible to experimentally verify the latter prediction. 

When viscous effects are small, the linear frequency of the fifth mode uko) = dl40 
is half that of the eighth mode uio) = 24140. Therefore, there is the possibility of 
second-order quadratic coupling between the fifth and eighth modes, which was 
pointed out and analysed for drops without viscosity by Natarajan & Brown (1986). 
These authors showed that there is a transfer of energy back and forth between the 
fifth and the eighth modes, the period of which depends on the amount of energy 
initially present in the two modes. L&M provided an independent confirmation of 
this prediction and also investigated the effect of an infinitesimal amount of viscosity 
on this phenomenon. Figure 23 shows the amplitude of the various linear modes for 
a drop released from an initially fifth-spherical harmonic configuration at  Re = 100. 
Plainly, the eighth mode begins to die out before the transfer of energy from the fifth 
mode is completed, due to  the higher rate of damping at the higher frequency. The 
fifth mode too gets damped out, because there is no energy left in the eighth mode 
to transfer from i t  back to the fifth mode. When viscous effects are infinitesimally 
small, L&M found that the eighth mode does not die out as it does here and there is 
a transfer of energy between the two modes, albeit at a different rate and with ever 
diminishing intensity as compared to the inviscid analysis of Natarajan & Brown 
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FIGURE 23. Decomposition of a drop shape into its linear modes. Variation in time of the 
Fourier-Legendre coefficients c,(t)  in (34). Initial shape : fifth-spherical harmonic ; Re = 100, f5 = 
0.3. Shown here are coefficients c5, c8 and co-c3. 
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FIGURE 24. Effect of increasing viscous forces over inertial forces on resonant mode interactions for 
drops released from initial shapes proportional to the fifth-spherical harmonic ( f5 = 0.3) : 
decomposition of drop shapes into their linear modes. Variation in time of the key Fourier-Legendre 
coefficients c,(t) in (34): (a) Re = 40 and (b) Re = 10. 
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(1986). Figure 23 also shows that the second mode, which is excited a t  its natural 
frequency by the same mechanism proposed for fourth-mode oscillations by L&M, 
plays a more significant role than it does when viscous effects are infinitesimally 
small. Moreover, the new computations show that even this amount of viscosity is 
enough to alter and make completely uninteresting the dynamics of modes other 
than the fifth, eighth, and second, in contrast to  the infinitesimal viscosity 
calculations of L&M. Figure 24 shows that further increasing the importance of 
viscous forces relative to inertial forces can prevent altogether the fascinating 
resonant mode interaction between the fifth and the eighth modes from occurring. 

5. Discussion 
The Galerkinlfinite-element method as applied in this paper is an example of ‘the 

method of lines ’ and is readily extended to more complex cases. For example, there 
are many applications, such as the diverse mass transfer operations of chemical 
engineering, in which the environment surrounding the drop is far from inactive. One 
prominent example is solvent extraction, where the fluid surrounding the liquid 
drops is another viscous liquid and solid boundaries abound. As shown by Miller & 
Scriven (1968), and also as pointed out by L&M, the effect of viscosity is much 
greater at the interface of an oscillating drop in liquid-liquid systems and cannot be 
accounted for even for low-viscosity fluids by the boundary-integral method 
developed by L&M. 

Figures 12-14 in particular, and some of the other results presented in this paper, 
have important implications for recently developed technologies that utilize electric 
fields to enhance heat and/or mass transfer to or from liquid drops (see e.g. Scott 
et al. 1990). It has been found that the most economical way to run such field-enhanced 
transport operations is to use a pulsed-d.c. field. Ideally, the goals are (i) to have the 
field on for a short period of time, thereby causing the drop to attain a large 
deformation almost instantaneously, as in figures 12-14, (ii) to  keep the field off while 
the drop undergoes several oscillations, and (iii) to repeat the cycle. The oscillations 
can induce appreciable convection in the drop, and around it as well if there is a 
liquid phase outside, and thereby enhance the rate of transport. Plainly, figures 
12-14 and ones like them for liquid-liquid systems are indispensable for gaining a 
fundamentally based understanding of and properly designing and running field- 
enhanced transport operations. Often, drop qize is set by other considerations and 
surface tension is the only parameter left to attain a desired range of Reynolds 
numbers. In practice, surface tension in liquid-gas systems and interfacial tension in 
liquid-liquid systems can be changed readily by means of surfactants. However, the 
presence of surfactants and/or trace impurities a t  the interface of an oscillating drop 
will cause interfacial tension gradients along it, in addition to changing the 
equilibrium interfacial tension. Such Marangoni-type convection can sometimes 
dominate these flows, the proper analyses of which requires simultaneous solution of 
the equations presented in this paper with those that govern the transport of the 
surfactant in and around the fluid interface. Analysis of the effects of surfactants on 
large-amplitude deformation and break-up of drops has been considered (Stone & 
Leal 1990). However, similar analyses have not been carried out in the context of 
drop oscillations and is a goal of future research. 

The results of this paper also show that a drop subjected to  an initial static 
deformation that is proportional to the second-spherical harmonic does not break-up 
or fission for finite-amplitude deformations as large as fi = 1.3. Viscous drops (Trinh 
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& Wang 1982) and inviscid drops (L&M and Patzek et al. 1991) that  are impulsively 
set in motion do break up by fissioning when the amplitude of the initial disturbance 
(impulse) is large enough. Therefore, there is a need to  investigate theoretically the 
effect of finite viscosity on the break-up of liquid drops that are set in motion by an 
impulse in the form of an electric or an acoustic field. 

Experiments of Trinh & Wang (1982) and the asymptotic analyses of Natarajan 
& Brown (1986, 1987) show that large-amplitude axisymmetric oscillations of liquid 
drops can become unstable with respect to non-axisymmetric disturbances, i.e. the 
instability generates finite-amplitude circumferential waves. Thus, another goal of 
future research is to extend the present work to analyse fully three-dimensional 
oscillations (Basaran & Patzek 1991). 
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